Folding Algorithm.

Marcin Kik

August 1, 2023
email: mki1967@gmail.com, www: http://cs.pwr.edu.pl/kik/

Abstract

We present analysis underlying the folding algorithm implemented in mki3d and et-editor.

The input contains four vectors $A_{1}, A_{2}, B_{1}, B_{2}$ from \mathbb{R}^{3}, such that their lengths $\left|A_{1}\right|=\left|A_{2}\right|=\left|B_{1}\right|=\left|B_{2}\right|=1$. Let $O=(0,0,0) \in \mathbb{R}^{3}$. We want to find a point $V \in \mathbb{R}^{3}$ that is result of both: the rotation of the point B_{1} around the line $O A_{1}$ and the rotation of the point B_{2} around the line $O A_{2}$. Generally, we have three possible cases:

1. there is no such point, or
2. there is only single such point (on the plane $O A_{1} A_{2}$), or
3. there are two such points on both sides of the plane $O A_{1} A_{2}$.

The input also contains a point $K \in \mathbb{R}^{3}$ that is outside the plane $O A_{1} A_{2}$. Point K indicates on which side of the plane should be the point V. We present a sequence of equations that yield the method of computing V.

Assume, that we have input for which $V=\left(V_{x}, V_{y}, V_{z}\right)=(x, y, z)$ exists. We have to find the values of x, y, and z. First note that the length of V is $|V|=1$ so we have scalar product $V \cdot V=1$. This implies:

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=1 \tag{1}
\end{equation*}
$$

Since $V-B_{i} \perp A_{i}$ (i.e. $V-B_{i}$ is orthogonal to A_{i}), we have:

$$
\begin{equation*}
A_{i} \cdot\left(V-B_{i}\right)=0 \tag{2}
\end{equation*}
$$

This implies that $A_{i} \cdot V=A_{i} B_{i}$ which is equivalent to

$$
\begin{equation*}
x A_{i, x}+y A_{i, y}+z A_{i, x}=A_{i} \cdot B_{i} . \tag{3}
\end{equation*}
$$

(We use notation $A_{i}=\left(A_{i, x}, A_{i, y}, A_{i, z}\right)$.) Thus we have:

$$
\left\{\begin{array}{l}
x A_{1, x} A_{2, x}=\left(A_{1} B_{1}-y A_{1, y}-z A_{1, z}\right) A_{2, x} \quad, \text { and } \tag{4}\\
x A_{2, x} A_{1, x}=\left(A_{2} B_{2}-y A_{2, y}-z A_{2, z}\right) A_{1, x}
\end{array}\right.
$$

By equality of left sides:

$$
\begin{equation*}
\left(A_{1} B_{1}-y A_{1, y}-z A_{1, z}\right) A_{2, x}=\left(A_{2} B_{2}-y A_{2, y}-z A_{2, z}\right) A_{1, x} \tag{5}
\end{equation*}
$$

Let us multiply and group by z, y, and remaining components:

$$
\begin{equation*}
z\left(A_{2, z} A_{1, x}-A_{1, z} A_{2, x}\right)=y\left(A_{1, y} A_{2, x}-A_{2, y} A_{1, x}\right)+A_{2} B_{2} A_{1, x}-A_{1} B_{1} A_{2, x} \tag{6}
\end{equation*}
$$

Now assume that $m=A_{2, z} A_{1, x}-A_{1, z} A_{2, x} \neq 0$. (Otherwise, we could consider $\{x, y\}$ or $\{x, z\}$ instead of $\{y, z\}$.) Then

$$
\begin{equation*}
z=y \cdot p+q \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\frac{A_{1, y} A_{2, x}-A_{2, y} A_{1, x}}{m} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
q=\frac{A_{2} B_{2} A_{1, x}-A_{1} B_{1} A_{2, x}}{m} \tag{9}
\end{equation*}
$$

By Equation 1 we have $x^{2}=1-y^{2}-z^{2}$ and hence

$$
\begin{equation*}
x^{2} A_{2, x}^{2}=\left(1-y^{2}-z^{2}\right) A_{2, x}^{2} \tag{10}
\end{equation*}
$$

On the other side, by Equation 3 for $i=2$:

$$
\begin{equation*}
x^{2} A_{2, x}^{2}=\left(A_{2} B_{2}-y A_{2, y}-z A_{2, z}\right)^{2} . \tag{11}
\end{equation*}
$$

By 10 and 11 we have

$$
\begin{equation*}
\left(1-y^{2}-z^{2}\right) A_{2, x}^{2}=\left(A_{2} B_{2}-y A_{2, y}-z A_{2, z}\right)^{2} \tag{12}
\end{equation*}
$$

Using 7 we rewrite it as a square equation on y :

$$
\begin{aligned}
\left(1-y^{2}-(p y+q)^{2}\right) A_{2, x}^{2}= & \left(A_{2} B_{2}-y A_{2, y}-(p y+q) A_{2, z}\right)^{2} \\
\left(1-y^{2}-p^{2} y^{2}-2 p q y-q^{2}\right) A_{2, x}^{2}= & \left(A_{2} B_{2}-q A_{2, z}-y\left(A_{2, y}+p A_{2, z}\right)\right)^{2} \\
\left(-\left(1+p^{2}\right) y^{2}-2 p q y+\left(1-q^{2}\right)\right) A_{2, x}^{2}= & \left(A_{2} B_{2}-q A_{2, z}\right)^{2} \\
& -2\left(A_{2, y}+p A_{2, z}\right)\left(A_{2} B_{2}-q A_{2, z}\right) y \\
& +\left(A_{2, y}+p A_{2, z}\right)^{2} y^{2} .
\end{aligned}
$$

Let us move everything on the right side:

$$
\begin{equation*}
0=a y^{2}+b y+c \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
a & =\left(\left(1+p^{2}\right) A_{2, x}^{2}+\left(A_{2, y}+p A_{2, z}\right)^{2}\right. \\
b & =\left(2 p q A_{2, x}^{2}-2\left(A_{2, y}+p A_{2, z}\right)\left(A_{2} B_{2}-q A_{2, z}\right)\right. \\
c & =\left(q^{2}-1\right) A_{2, x}^{2}+\left(A_{2} B_{2}-q A_{2, z}\right)^{2}
\end{aligned}
$$

Now we can solve it. First compute $\Delta=b^{2}-4 a c$. If $\Delta<0$ then there is no solution. Otherwise, let:

$$
\begin{aligned}
& y_{1}=\frac{-b-\sqrt{\Delta}}{2 a} \\
& y_{2}=\frac{-b+\sqrt{\Delta}}{2 a}
\end{aligned}
$$

By 7 we can compute, for each y_{j}, the corresponding z_{j}. The assumption $m \neq 0$ excludes the case $A_{1, x}=A_{2, x}=0$. Thus, by 3 we have at least one $i \in\{1,2\}$ that we can use for computing the corresponding x_{j} :

$$
\begin{equation*}
x_{j}=\frac{A_{i} \cdot B_{i}-y_{j} A_{i, y}-z_{j} A_{i, z}}{A_{i, x}} . \tag{14}
\end{equation*}
$$

Let $V_{j}=\left(x_{j}, y_{j}, x_{j}\right)$. Finally, if $V_{1} \neq V_{2}$, we have to decide, which solution should be selected. Recall that we have the input point K that should be used for this purpose. V_{1} and V_{2} should be on different sides of the plane $O A_{1} A_{2}$. Let $\operatorname{det}\left[W_{1}, W_{2}, W_{3}\right]$ denote the determinant of the matrix with the columns W_{1}, W_{2}, W_{3}. We should select $V=V_{i}$, such that $\operatorname{det}\left[A_{1}, A_{2}, K\right] \cdot \operatorname{det}\left[A_{1}, A_{2}, V_{i}\right]>0$.

The working JavaScript implementation of the folding algorithm can be found in the file mki3d_constructive.js. The method described in this document is implemented in the function named mki3d.findCenteredFolding.

