
Folding Algorithm.

Marcin Kik

August 1, 2023

email: mki1967@gmail.com, www: http://cs.pwr.edu.pl/kik/

Abstract

We present analysis underlying the folding algorithm implemented in

mki3d and et-editor.

The input contains four vectors A1, A2, B1, B2 from R3, such that their lengths
|A1| = |A2| = |B1| = |B2| = 1. Let O = (0, 0, 0) ∈ R3. We want to �nd a point
V ∈ R3 that is result of both: the rotation of the point B1 around the line OA1

and the rotation of the point B2 around the line OA2. Generally, we have three
possible cases:

1. there is no such point, or

2. there is only single such point (on the plane OA1A2), or

3. there are two such points on both sides of the plane OA1A2.

The input also contains a point K ∈ R3 that is outside the plane OA1A2. Point
K indicates on which side of the plane should be the point V . We present a
sequence of equations that yield the method of computing V .

Assume, that we have input for which V = (Vx, Vy, Vz) = (x, y, z) exists. We
have to �nd the values of x, y, and z. First note that the length of V is |V | = 1
so we have scalar product V · V = 1. This implies:

x2 + y2 + z2 = 1. (1)

Since V −Bi⊥Ai (i.e. V −Biis orthogonal to Ai), we have:

Ai · (V −Bi) = 0. (2)

This implies that Ai · V = AiBi which is equivalent to

xAi,x + yAi,y + zAi,x = Ai ·Bi. (3)

(We use notation Ai = (Ai,x, Ai,y, Ai,z).) Thus we have:{
xA1,xA2,x = (A1B1 − yA1,y − zA1,z)A2,x , and

xA2,xA1,x = (A2B2 − yA2,y − zA2,z)A1,x .
(4)

1

http://cs.pwr.edu.pl/kik/
https://mki1967.github.io/mki3d/
https://mki1967.github.io/et-edit/

By equality of left sides:

(A1B1 − yA1,y − zA1,z)A2,x = (A2B2 − yA2,y − zA2,z)A1,x. (5)

Let us multiply and group by z, y, and remaining components:

z(A2,zA1,x −A1,zA2,x) = y(A1,yA2,x −A2,yA1,x)+A2B2A1,x −A1B1A2,x. (6)

Now assume that m = A2,zA1,x −A1,zA2,x ̸= 0. (Otherwise, we could consider
{x, y}or {x, z} instead of {y, z}.) Then

z = y · p+ q, (7)

where

p =
A1,yA2,x −A2,yA1,x

m
(8)

and

q =
A2B2A1,x −A1B1A2,x

m
. (9)

By Equation 1 we have x2 = 1− y2 − z2 and hence

x2A2
2,x = (1− y2 − z2)A2

2,x. (10)

On the other side, by Equation 3 for i = 2:

x2A2
2,x = (A2B2 − yA2,y − zA2,z)

2. (11)

By 10 and 11 we have

(1− y2 − z2)A2
2,x = (A2B2 − yA2,y − zA2,z)

2. (12)

Using 7 we rewrite it as a square equation on y:

(1− y2 − (py + q)2)A2
2,x = (A2B2 − yA2,y − (py + q)A2,z)

2

(1− y2 − p2y2 − 2pqy − q2)A2
2,x = (A2B2 − qA2,z − y(A2,y + pA2,z))

2

(−(1 + p2)y2 − 2pqy + (1− q2))A2
2,x = (A2B2 − qA2,z)

2

−2(A2,y + pA2,z)(A2B2 − qA2,z)y

+(A2,y + pA2,z)
2y2.

Let us move everything on the right side:

0 = ay2 + by + c, (13)

where

a = ((1 + p2)A2
2,x + (A2,y + pA2,z)

2,

b = (2pqA2
2,x − 2(A2,y + pA2,z)(A2B2 − qA2,z),

c = (q2 − 1)A2
2,x + (A2B2 − qA2,z)

2.

2

Now we can solve it. First compute ∆ = b2 − 4ac. If ∆ < 0 then there is no
solution. Otherwise, let:

y1 =
−b−

√
∆

2a
,

y2 =
−b+

√
∆

2a
.

By 7 we can compute, for each yj , the corresponding zj . The assumption m ̸= 0
excludes the case A1,x = A2,x = 0. Thus, by 3, we have at least one i ∈ {1, 2}
that we can use for computing the corresponding xj :

xj =
Ai ·Bi − yjAi,y − zjAi,z

Ai,x
. (14)

Let Vj = (xj , yj , xj). Finally, if V1 ̸= V2, we have to decide, which solution
should be selected. Recall that we have the input point K that should be used
for this purpose. V1and V2 should be on di�erent sides of the plane OA1A2. Let
det[W1,W2,W3] denote the determinant of the matrix with the columns W1,
W2, W3. We should select V = Vi, such that det[A1, A2,K] ·det[A1, A2, Vi] > 0.

The working JavaScript implementation of the folding algorithm can be
found in the �le mki3d_constructive.js. The method described in this docu-
ment is implemented in the function named mki3d.findCenteredFolding.

3

https://github.com/mki1967/mki3d/blob/master/mki3d_www/js/mki3d_constructive.js

