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This document is replacement of mki-seminar _current.pdf from https://sites.google.com/site/rbo-
protocol/rbo-files. It contains more intuitive presentation of the analysis of the the RBO (bit-
reversal scheduling protocol) [1], [2], [3], [5], [4]. It will be updated to improve its readability.

First we present the bounds on the tuning costs (i.e. external-energy costs) of the RBO receiver
in the case of reliable and unreliable transmission channel.

Then we present and analyze the algorithm NSI that efficiently computes the next wake-up time-
slot for the RBO receiver.

Introduction

Broadcast scheduling: There is a single server (broadcaster) that broadcasts a set of messages
and a dynamic set of clients (receivers). Each receiver wants to receive some specified subset of
the messages. Each message has a key and we assume that the keys are from some linearly ordered
universe.

The broadcaster is unaware of the receivers and what are the keys requested by the receivers. He
simply broadcasts the set periodically in so called broadcast cycles. The broadcast cycle is divided
into time-slots and in each time-slot a single message is transmitted.

On the other hand the receiver is initially unaware of the contents of broadcast cycle. He simply
wants to receive all the messages with the keys in some specified interval, say [k, k"]. The receiver
may start at arbitrary time-slot s during the broadcast cycle and we want it to receive all the
messages with the keys in [k’, k"] transmitted since the time-slot s. Since there is some cost
(usually — energetic) of message reception, we also want to minimize the number of time-slots when
receiver to listens to anything else. We call the number of such time-slots extra energy or tuning
cost of the receiver.

We propose a broadcast scheduling method based on properties of bit-reversal permutation. We
assume that the length of broadcast cycle is n = 2¥, for some positive integer k. (Otherwise, we
may duplicate some messages to increase their number to the power of two, since we do not require
that the keys are distinct.)

Preliminaries
Notation:

e bing(z) denotes k-bit binary representation of x mod 2*

(e.g. bing(5) = (0101))
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e for x>0, bin(z)=Dbin(z), where l=/Tlgs(x+1)]
(e.g. bin(5) = (101), bin(0) =())

e for a binary representation «, (a)2 denotes the integer represented by «

(e.g. (0101)2=05)
e for a sequence «, rev a denotes the reversal of the sequence «
e o/ denotes concatenation of sequences o and /3
e o' denotes concatenation of i copies of the sequence .

e revy(t) is the integer represented by reversal of k-bit representation of ¢ mod 2* i.e.:

revg(t) = (rev bing(t))
e 7 denotes the set of all integer numbers
o [lo,0]=[a,0]NZ

o for SCZ, revyS={revig(z)|zeS}

(i.e. image of S under revy)
e For a finite set S, the number of elements of S is denoted by |5/

e For a random variable v, EX[v] denotes the expected value of v.

RBO operation

The length of the broadcast cycle is 2¢. Let n denote 2F.
The sequence K, ..., kn—1 is the sorted sequence of the keys (i.e. ko<...<Kkp_1).
The broadcast cycle is the sequence: Kiev,(0), --+» Frevi(n—1)-
Let us define kx_1 and k,, as follows: k_; = —o0 and k,, = +00.
The receiver wishes to receive the keys from the interval [/, k"].
We assume that <’ < k"
Let r'=min{r: r€[[0,n)]] A&’ <k, } and " =max{r: re[[-1,n—1]] Ak, <r&"}.
Note that:
e 0<7r'<r”"+1<n,and
o {ki:r'<i<r"y=[r',k"]N{Kos..cs Kn—1}, and

e r'=r"+1 implies [/, k"] N{Ko, ..., kn—1} =0.

By s we denote the time-slot when the receiver starts. (W.l.o.g. we assume that s >0.)

RBO Broadcaster in time-slot ¢ broadcasts ey, (¢)-



RBO Receiver requesting for the keys from [k’, k"] starting in time-slot s:
e starts in time slot s with lb=0, ub=n—1
e In time slot t > s:
o if Ib <revy(t) <ub then the receiver listens

o if the receiver successfully receives the key k= Krev, (1)

then
— if K<k’ then Ib<+revg(t)+1
— if k" <k then ub <+ revy(t) — 1

if k' <k <k’ then the receiver reports x

o ifub<Ib then the receiver reports absence of the keys from [k’, k"] in the broadcast
cycle and stops

Let lb; denote the value of 1b just before time-slot ¢. (For ¢ < s, we have lb;=0.)
Let ub; denote the value of ub just before time-slot ¢. (For ¢t <s, we have ub; =2% —1.)

The left-side energy used in the set of time-slots Y (denoted: le Y) is the size of the set {t € Y :
Ib; <revy(t) <r'—1}.

The right-side energy used in the set of time-slots Y (denoted: reY') is the size of the set {t €Y :
r"”"+1<revg(t) <ubs}.

Example:

Recall that s is the starting time-slot of the RBO receiver.
If s is such that:

bing(revy(s)) = (000111011010011)
then, we present bing(revg(s)) as the following concatenation:
(000)(111)(011)(01)(0)(011).

Note that the sequence bing(revg(s)), bing(revi(s+1)), ... looks as follows:

e (000)(111)(011)(01)(0)(011),

(100)(111)(011)(01)(0)(011),

e (010)(111)(011)(01)(0)(011),

(111)(111)(011)(01)(0)(011),



e (000)(000)(111)(01)(0)(011),

e (100)(000)(111)(01)(0)(011),

o (111)(111)(111)(01)(0)(011),

e (000)(000)(000)(11)(0)(011),

e (111)(111)(111)(11)(0)(011),

e (000)(000)(000)(00)(1)(011),

o (111)(111)(111)(11)(1)(011),

e (000)(000)(000)(00)(0)(111),

e (111)(111)(111)(11)(1)(111),

e (000)(000)(000)(00)(0)(000),

o (111)(111)(111)(11)(1)(111),

e (000)(000)(000)(00)(0)(000),

o (111)(111)(111)(11)(1)(111),

Definitions:

k is fixed positive integer such that the length of the broadcast cycle is n = 2F.

Thus, the broadcast cycle is the sequence: ey, (0)s -+ Frevy (2~ —1)-

s is the time-slot when the RBO receiver starts.

Let the non-negative integer: last and the sequence ly, ..., l1,st be defined as follows:

If bing(revy(s)) = (0)* then last =0 and lo =k, else

if bing(revi(s)) = (0)¥'(1)*=*’, for some k’, 0 <k’ <k, then last =1, and lo=k’, and I; = k, else

last and lo, ..., ljast are defined so that the following holds:

bin (revi(s)) = (0)/o(1)1=o((0) (1)'2=1=)...((0) (1)1r s 1),

Note that we have always lj.5¢ = k.



For ¢ > last, let [, =k.

Let ;= (0)(1)l+ b=t

Let v/ = (1)k+17k,

Old definitions of 3; and «;:
Bi= %'/%'H---’Ylascﬂ

(0)041' = Yi41.--Nast—1

Note that: revg(s) = ((0)°9y1... Nast—1)2

— bing (revy(s)) —

— Bo —
— (e 75} —

0 .. 0|1 .. 1JO0[1 .. 1][0[L ... 1]0]as

— lp =« 7% =+ m = 7 =

— L —

— ly —

— l3 —

— k —

Let tg=s.
For i >0, let t;41=1t; + 24.

Note that: revg(t;) = ((0)' v/ Yit1..- Mast—1)2 (If i =1last — 1, then ;4 1...71ast_1 is empty sequence,
and, if ¢ >last, then /79,1 1...7ast—1 is empty sequence.)

Division of the time-slots s,s 4 1,... into blocks Y; and sub-blocks Y; ;:
For i >0, let Y; ={[t;, ti+-1—1]].

For i >0, for j €[[0,1]], let Vi j=[[t; + [27 7], t:+ 27 —1]].

Note that Vio={t;} and, for j € [[0,1;— 1]], Yi j4+1C ¥i \ (Uigo YW).

Sets of keys’ indexes broadcast during blocks Y; and sub-blocks Y; ;:
Let X, =rev,Y;.

Let X; j=rev,Y; ;.

Subset X; contains the elements of the following sequence of indexes:

o (rev(bing(0))vi Yit1---Vast—1)2

i (rev(binli(Qli - 1))71'/ 'Yi—i—l---'Ylast—l)Q

Note that: For i =1last — 1, 7,4 1...Vast—1 iS an empty sequence and, for i =1last, v/ Vi1 1... Viast—1 iS
an empty sequence. If lo=0, then rev(bin;,(0)) = rev(bin, (2! — 1)) is an empty sequence.



We have X; 0= {(0)"y Vit 1. Vast—1}-

For 1< j <I;, subset X; ; contains the elements of the following sequence of indexes:

e (rev(bin;—1(0)) 1 (0)5 I/ Yit1.--Vast—1)2

i (feV(bi]ﬂjfl(Qj*1 -1))1 (O)Zifj%'/ Yit1---Nast—1)2

Note that: For j =1, rev(bin;_1(0)) =rev(bin;_1(27~! — 1)) is an empty sequence.

Note that: If X; ; contains more than one element, then j >2 and the minimal distance between
the elements of X; ; is 2F—7+1,

Infinite extensions of X; and of U;':o X,
For i >0, let X;={x- 270 4 (4/vi 4 1... Mast—1)2 : *EZ } and,
for j€[[0,1,], let X; j={z-2F77 + ((0)" I ¥/¥it1.--Vast—1)2: TEZ }.
Note that: X; =X;N[[0,2F —1]] and Y%, _, X; ;»=X; ;N [[0,2% —1]].
Definitions of pl'-,j, pi, i and p@"fj, piy xi'

o pii=max{z:zeX; ;A Az<r}

e =z} ;=|p};/277] (note that: ] ; > —1, since r'>0)

e pi=max{z:zeX;Az<r'}

o 2z/=|p}/2""k]| (note that: ] > —1, since ' > 0)

o pi'i=min{z:zeX; ;A Ar"<z}

o /' ;=|pl';/2*77] (note that: =/ ; <27, since r” <2F—1)

o p/=minf{a:zeX;Ar"<z}

o 2/=|p//2""| (note that: x) < 2% since r” <2k 1)
Note that:

o pi=2F"tal b (Vi1 Mast—1)2

o pii=2""a i+ ((0) I Yig 1 Nast—1)2

o pi=2F"t a4 (y{ig 1 Mast—1)2

o pi=2F"0 2l i+ ((0) Iyl vt 1 Mast—1)2



ENERGY IN RELIABLE NETWORK

In reliable network the receiver successfully receives the key in each time-slot it listens.

LEFT-SIDE ENERGY:

Let 1b; denote the value of Ib just before time-slot ¢. (For ¢ <s, we have lb;=0.)

Note that:
e if t <t’ then Ib; <lb;/, and

e RBO receiver uses one unit of left-side energy in time-slot ¢ (i.e. le{¢t}=1) if and only if
revi(t) € [[Ibs, 7’ — 1]] and lbsy 1 =revy(t) + 1.

o le[[t,t+m]]<|[[Iber — 1) Nrevy [[t,t +m]]|.

e The left-side energy used in Y; ;1 is not greater than the size of [[p; + 1,7 — 1]]N X1 =
[[pi+ 1, pipa]] N X 1. (Le. leYip 1 <|[[pi+ 1, piga]] N Xig1 )

o The left-side energy used in Y; j41 is not greater than the size of [[p; ;+1,r' —1]]NX; j41=
[P+ L pi ] N X 1. (Tee 15 jua <[ [[pi ;i + 1, pi j ]l N X 41 )

Bounds on r’:
o pitl<r/<pi+2th
o pli+1<r'<p] ;42877

Bounds on 1b:

After the time-slots )

i1_o Yir the value of 1b is in [[p; + 1,7]].

i—1

After the time-slots | J,,_,

Y; U Uj:':o Y;, ;- the value of b is in [[p; ; +1,77]].

(In other words: if ¢ > max Y; + 1, then lb; € [[p; + 1, r/]] and if ¢ > max ¥; ; + 1, then
Ib; € [[pi,; + 1,71]].)

Left-energy bound for Y; ¢:
The left-side energy used during the time-slots Y; ¢ is at most 1, since |Y; o| =|X;,0|=1.
Left-energy bound for Y; ;i :

For 0<j <l;—1, the left-side energy used during the time-slots Y; ;41 is at most 1, since:
o [lpfi+1,r —1NX; ;41 C[[plj+1,pl;+2°7T —1]]NX; 41, since 7’ < p} ;+2F77 and
o [lpij+1,pi ;257 —1NX; j1a C{pi +2577 71

Left-side energy bound for Yj:

Thus, the left-side energy used during the time-slots Yy is at most 1+ .



Lemma 1. (Lemma LO0.) leY; <1+1.

Left-side energy bound for Ulji/:o Yit1,j7, where ¢ +1 <last —1:
Remark: If ¢+ 1 =1last — 1, then 7;49...7ast—1 is an empty sequence.

For 0<i<last —1, the left-side energy used during the time-slots Ulji,:o Yit1,5 45 at most 1, since:

b [[lbmin Yiy1 r'— 1]] N (Ulji’zo Xi+17j/) - [[pl{—’— L pi{ + 2k =k — 1]] N XH‘LM and
o pi+1=2F"bal+ (v/vit1Nast—1)2 + 1> 287wl ((0) 7y i 9. Ylase—1)2, since
(Vvie1)2> ((0)'+1 7l 1), and

o pi + 2V — 1 =280 (g + 1) + (YYirreMast—1)2 — 1 < 2870 (@) 4+ 2) +
((0)! i+ =t/ 19i 4. Yast—1)2, and, hence,

o [pi+1pi+ 2" 1IN XG0, S {270 (24 1) + (005 71 Yig Mast—1)2}-
Left-side energy bound for Y;11, where 7+ 1 <last — 1:
For each j, j >;, the left-side energy used in Y; 1 ; is at most 1.

If the left-side energy used during the time-slots Uljif:lo_l Yit1,5 8 {41 — 1, then

e the left-side energy used during the time-slots Ulji,:O

Y;+17j/ is 1 and
o iy =21 (@4 1)+ ((0) 75y 1y Yast—1)2, and,

o for each j, l;+1<j <ljy1—1, the left-side energy used during the time-slots Y; 11 ; is one
and pjyq ;= 2k =l (zf+ 1)+ ((1)7~H(0) 5+ = Iy) 1 Vit oo Mast—1)2-

Note that, in this case:
o piriga—1=2"b (@l 1)+ (1) 09 Y2 Yast—1)2, and

o 7 < pp 4 2P = 2Pl (@] 4+ 1)+ (Wi Mast—1)2 < 28TH (@ + 1) +
(1) i+~ biny) 1 ¥iq .. Yast—1)2, and, hence,

o [[Pit11p—1+ 17" =1]NXG 1, =0, thus, the left-side energy used in time-slots Y; 11,1, .,
is zero.

Thus, the left-side energy used in Y; 1 is at most l; 1 —1;.

15

Left-side energy bound for Uj’:

o Yi+1,j» where 1+ 1 =last:
Remark: If ¢ + 1 =last, then v;41...71ast—1 1S an empty sequence.

For i+ 1 =last, the left-side energy used during the time-slots Ulji,:O Yii1,50 15 at most 1, since:

o [bminyiesr =N (Ufiz Xisrr) Slpi+ 1 p+2574 = 1] N Xy, and

o plr1=2F"liigl 4 (44 1>2F gl 4+ ((0)i+174),, since (7)a > ((0)5+17 1)y, and

o pi2k Tl =2kl (/4 1)+ (7)o — 1< 2P (2l 4 2) + ((0)5+174),, and, hence,



o [lpi+Lpi+ 28t = 1IN X, SV (@i +1) + ((0)1 171}

Left-side energy bound for Y;,1, where ¢ 4 1 =last:

For each j, j >;, the left-side energy used in Y; 1 ; is at most 1.

If the left-side energy used during the time-slots Uljif:lo_l Yit1,5/ 18 l+1 — 1, then the left-side
energy used during the time-slots Ulji,:O Yip1,018 1and pjyy,, =287 (2] 4+ 1) + ((0)'i+2174),,
and, for each j, l; +1<j <l;41 — 1, the left-side energy used during the time-slots Y; 11 ; is one

and pjyq ;=287 (2] + 1)+ ((1)771(0)+179),. Note that, in this case:
o Piprpg, -1 =28 (24 1) + (1) 71710)2, and
o r/<piyokli=okmli (2l 1) 4 (4)e=2F "t (2] + 1)+ ((1)l+171),, and, hence,

o [[Pit11p-1+ 1" =1]NXG 1, , =0, thus, the left-side energy used in time-slots Y; 1,
is zero.

i+1

Thus, the left-side energy used in Y;4+1 is at most l; 11 — ;.

Lemma 2. (Lemma L1.) Vo<i<iasi—11e Y11 <lj31—1;.

Total bound for the left-side energy:

Left-side energy is at most 1+ly+ Ziazsgfl (liv1=1)=14+last=1+k.

Lemma 3. (Lemma L.) le{t: t€Z A t>s}<k+1.

RIGHT-SIDE ENERGY

Let ub; denote the value of ub just before time-slot ¢. (For ¢t <s, we have ub; =2% —1.)

Note that:
e if t <t/ then ub; >uby/, and

e RBO receiver uses one unit of right-side energy in time-slot ¢ (i.e. re{t} =1) if and only if
revi(t) € [[r” + 1, uby]] and ubsy1 =revg(t) — 1.

o rellt,t+m]] <|[[r"+1,ubs]] Nrevy[[t,t+m]]|.

e The right-side energy used in Y;, 1 is not greater than the size of [[r” +1,p) —1]]NX;11=
[Py pi = N Xip1. (e reYipr <[ [[piy1, pi — N Xip1])

e The right-side energy used in Y; j41 is not greater than the size of [[r” + 1, p/’; — 1]] N
Xijr1=Pi 41,07 — YN X j41. (Le. 1eYi i1 <|[[p7 11,05 — 1N X g1 [)

l
o Forl€[[0,lixa]], reUji—g Yier i <Illpifrpi' = N Xig1|



Bounds on r":
o pl 28l <pl-1
IR R

Bounds on ub:

After the time-slots U:,:O

Y;s the value of ub is in [[”, p;’ —1]].
After the time-slots Uz,_:lo YU U§,20 Y;, ;¢ the value of ub is in [[r”, pi’; —1]].

(In other words: if ¢ > max Y; + 1, then ub; € [[#”, p/ — 1]] and if ¢ > max Y; ; + 1, then
Ib, € [[r”, pi’; —1]].)

Right-energy bound for Y; o:

The right-side energy used during the time-slots Y; o is at most 1, since |Y; o] =X, 0| =1.

Right-energy bound for Y; ;i 1:

For 0<j <l;—1, the right-side energy used during the time-slots Y; ;11 is at most 1, since:
o [[r"+Lubipmaxy, N X ClpF; — 2877+ 1L pil; — 1IN X j41, and

o lp/; =284 1,p/;—1INX, ;11 C{pl; — 2831}

Right-side energy bound for Yj:
Thus, the right-side energy used during the time-slots Yy is at most 1+ .

Lemma 4. (Lemma RO.) reYy <1+1p.

Right-side energy bound for Y;i;, where 7 + 1 < last, in the case 2k—bti . lr 4
((0) '+ byl yig e Frast— 1) <77

Remark: If i+ 1 =last, then 7/ 179i+2..-Vast—1= Vi+1.--Vast—1 1S an empty sequence.

We have:

o 2k=ligl 4 ((0) 1 by it o Mast—1)2 <7, and

o pl/=2F"b gl (Y g1 Nast—1)2 < 28 7E - (@ + 1)+ ((0) 5+ Ty i e Ylast—1) 2
Thus, [[r"+1,pf — 1] NX; 1, =0.

Since, for j+1€[[l;+ 1,1;+1]], the right-side energy used in each Y;y1 ;11 is at most one, the total
energy in Yii1 is at most l;11 —l; in this case.

Right-side energy bound for Y;, i, where i + 1 = last, in the case r” < 2=l . g/ ¢
((0) iy, 1 Yig 20 Vast—1) 5

Remark: If i+ 1 =last, then 7/ 179i+2..-Vast—1= Vi+1.--Vast—1 1S an empty sequence.

10



We have:

o pil =2kl <2l gl 4 ((0)5 417 H),, and,

o since y/= (1)l plf —2klm 2h i (g — 1) 4 (1)l TH)p = 28—l gl 4 (0) =)y — 1.
Thus, 7/ = pj/ — 251 = 261 (g = 1) + ((1)!+71)5 and 1+ 1= 261 2 4 ((0)+171),,

Recall that p) —1=2F"ti. 2/ + ((1)l+174710))y and Yi4 1 = Yiass = [[0, 2% — 1]].

Let ¢/ =min {t € Yiast : revi(t) € [[r” +1, pi’ —1]]}. Note that revy(t') =r" 41 and, hence, the right-
side energy used in Yias is at most one in this case. (After t’ the value of ub is r”.)

Right-side energy bound for Y;; 1, where ¢ + 1 <last — 1, in the case r" < o2k —bi. gt 4
((0) iyl Yt 2o Mast—1) 5
We have:

o pzl'I: ok—li, :Czll+ ('y{’yi+1-~-71ast*1)2

o pl 2kl <okl g 1 ((0) i1l i o Vast—1)2-

o pif—1<287h (@ + 1)+ ((0)+ 7 ha/ i 1 Yig o Mast—1)2, and
o 2Pl (gl — 1)+ ((0)" T hiyf 1 Yig o Aast—1)2 <7+ 1.
This implies:
o [P+ 1,pl +1INX;q1,,= {28l ) 4+ ((0)5+ 7 biy/ 1 Yip 00 Yiast—1)2} and,
o pila =28t a4 ((0) Tl Yo Vast—1)2-

Thus the right-side energy used in Ulji,:O Y41, is at most one.

Since 287l - (2 — 1) + (WYig1Mast—1)2 = pi — 271 < r” we have 2F7l . (2 — 1) +
()' 75 710) v/ 1 Mast—1)2 < 7" + 1 and, hence, [[r” + 1, piy1,,]] N Xip1 C{2F70 - (2 — 1) +

((1)b+1=tin 1 Alast—1)2}. Thus, the right-side energy used in Yj;1 \ (Ul]}'/:O yl,+17j/) is at most
one.

Hence, the total right-side energy used in Y; 11 ts at most two in this case.

The relation between the right-side energy used in Y;;; and p{y ;:
It follows that

Lemma 5. (Lemma R1.) For 0 <i <last — 1, either the right-side energy used in Y;11 is at
most li+1 — lz (ZC re }/iJrl S li+1 — lz) or:

o i+ 1<last, and
(] li+1—li:1, and

e the right-side energy used in Y;41 is two (i.e. reY;11=2), and

11



b ub1+maXY¢+1 +1 :pggrl =2kl (‘TZN - 1) + ((1)li+l_li7i/+1---'Ylast—l)Q'

Compensations for the cases, when the right-side energy used in Y;; is two and
lLivi—1l;=1:

In the following, we show that all the cases (except the last one) when the right-side energy used
in Y;41 is greater than [; 1 — [; must be compensated by using less than l; 194 — l;414. of right-
side energy in Y; 194, for some ¢ > 0.

Bound on the right-side energy used in Y;1; and the values of x}, ; and ubi 4 maxv; 1

in the case when the energy used in Y;;; is at least l;41 — [l; and z{\; >
(bin(ml'-’)(O)L“Fl_l"_l(l))z:
We show that, in this case, the right-side energy is ezactly liv1 — ;i and z}\, =

(bin(z{-')(0)“*17”71(1))2 and ubi4maxy,,, = pilii—1.

Lemma 6. (Lemma S.) If re Y 1> 11 —1; and 2,1 > (bin(z})(0)li+1=L=1(1))y then
o reY, i 1=0l1—1; and
o o= (bin(el)(0)n 5 1(1)), and
® ubijimaxyi,, =Pir1— L.

Proof:

Since p!/iq > (bin(x!)(0) i+ ==Yy L1 Yivo . Mast—1)2 and ply — 287l < ) we have
(bin(z7)(0) 1~ iyl 1 Yitoe Atast—1)2 <77

We also have

7" < pi' = (bin(z{) (1)1 iy, L1754 00 Yast—1)2 < (bin(zf + 1) (0)+1 7 big/ L it 0. Mast—1)2-

Hence,
o pi1g,= (bin(z] +1)(0)" 1759 1% 4 0. Yase—1)2 and
o (P10 P —1]NXi41,,=0 and

o the right-side energy used in Ulji,:O Y, is zero and

/! i
L4 pi-i—l,lizpi ZUlermain+1:ub1+main+1’Li+1-

Since the right-side energy used in Y;4; is at least ;1.1 —[; and the right-side energy used in each

Yit1,; is at most one, the right-side energy used in each Y;y1 41, for each j+ 1€ [[l; + 1, ;41]],

must be exactly one.

Thus, for each j+1¢€[[l;+1,1;41]], we must have ub; 11 41+ 1=p/t1 j41<Dit1,j-

Note that, p/y1 j11€{pii1 4. pir1,;— 287971} Thus, for each j+1€[[l;+1,1;4+1]], we must have
" . —pl! . _9k—j—1

Pit1,j+1=Pi+1,5 .

Since p{i 14, = (bin(z{ + D)(0)i+17 ) 1yt o Mast—1)2, it follows by induction that, for each

JH1eli+1, L], plia,j+1 = (bin(zf)(0)7 ~H(1)(0) I~y 1y o Vast—1)2-

Thus, for j+1 =111, we have p/i1 ;+1 = (bin(z/)(0)"+ =4~ H1) v/ 1%ig2.- Mast—1)2 = Pii1-
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Compensation Lemma:

Lemma 7. (Lemma C.) [If, for some i € [[0, last — 2]],
e <z} 1= (bin(z{ —1)(1))2, and,

o for some d, where i + 2+ d <last, for each c €[[0,d]], the right-side energy used in Y;yoy.
s at least li1o4c—lit1+e,

then, for each c € [[0,d]], we have
o litarc—lit14c<2, and
o right-side energy used in Y; o4 is exactly liyorc—lit14¢, and
o ziioye=(bin(2ii1) it Vit14e)2, and

"
® Pitore=Ubitmaxy o 1

Proof:
Note that

o p;=(bin(x{)¥{Vitr1.--Nast—1)2, and, hence,
o 7 >pf = 28"l= (bin(x] = 1)v/Yig1--Vast—1)2-
Since r”" > (bin(z; — 1)7{¥i+1.--Mast—1)2, We also have, for arbitrary ¢’ € [[0,last — 1 —4]],
Pi14e>1" > (DIn(@f — 1) yiyig 1o Vit e Vil 41Vide'+20- Nast—1)2-

(Note that if ¢/ =last — 2 — i, then ;4 ¢/ 42...Mast—1 IS an empty sequence, and if ¢/ =last — 1 — i,
then v/ /4 1%itc/+2.--Mast—1 1S an empty sequence.)

Hence, we also have

Proposition 8. (Proposition CP.) z; . 1> (bin(z! — 1)Vivit1..- Vit er)2-

We proof the Lemma 7 (Lemma C) is by induction on ¢. However, we start by noting that, for
c=—1, we have x/'; 5, .= (bin(x/1))o.

The induction step for ¢ € [[0, d]]:

By inductive assumption we have z{, | ;.= (bin(z{'\ 1) Vit1---Vite)2-

Case l,’+2+c — li—|—1+c =1:
Then 7;4+1+.=(0) and

Pz{ﬁruc = (bin(fﬁﬁﬂ)%ﬂ---%‘+c(1)%+c+2---Vlasc—1)27
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since v/ 14.=(1).

Let p= (bin(@i’1)Yit1---Yite(0) Vi £ ot --Vast—1)2-

Note that p € X424, and

the minimal element greater than p in X;1o4cis (bin(z{y 1) Yit1.--Yitc(1) Vit et --Mast—1)2,
which is greater than p;;,.—1.

In other words: [[p, piy14c— 1] NXiro1c={p}

We have p; 5, .> p, since, by Proposition 8 (Proposition CP),

Titote > (b2 1) Yig1 Vit Vit 14+c)2 = (BIn(zih1) Vit 1. Yite(0))2.

Since the right-side energy used during Y;i24. is at least one, we must have

Ub1 {max Yijope T 1= Ditotre=p=(bin(xit1)Yig 1. Vit e(0) Vit ot2- Vast—1)2-

Case liy24c—livi4c=2:
Then 1402 (01) = (0) #2151,

The right-side energy during Y; o4 is at least l; 424 — li114 and, by Proposition 8| (Proposition
CP),

iy > (bin(@i1)Vis 1 Vit Viv1+e)2 = (bIN(@ 14.0) Vir14c)2.
Hence, by Lemma 6 (Lemma S),
e the right-side energy during Y4 o4, is exactly l;4o4¢—li+14¢, and
® ubiimaxyi ...+ 1=pitot, and
° Titoe= (bIn(@if1) Vi1 Vit 14c)2-
Case l;124c—lit14c2>2:
Let g=livotc—liv14c— 1.

We have ¢ >1 and ~v;414+.=(0)(1)%

The right-side energy used in Y; 424 is at least l; 494 — li+1+4. and, by Proposition 8 (Proposition
CP),

Ti'tore > (DIN(@ 1) Vi1 Yir14¢)2 = (bin(zil14)(0)4(1))2.
Hence, by Lemma 6 (Lemma S), we have x5, .= (bin(z{14.)(0)4(1))2.

However, by Proposition 8/ (Proposition CP),

Titore = (bIn(@fy1)Yit1-Yit140)2
(bin(2iy 14.6)(0)(1)9)2
> (bin(z7}14)(0)%(1))2,

where the last inequality follows from: ¢ > 1.

Thus we have contradiction and the case l; 424+ —li+14¢ > 2 is impossible.

14



Total right-side energy:
Let 7 be such that the right-side energy used in Y;; is greater than [; 1 — ;.

Then ;41 — I; =1 and the right-side energy used in Y;11 is two, and ubijmaxy;,, + 1= pit1 =
2kl (2 — 1) + ()" )1 Yast—1) 2.

Thus, z;'y; = (bin(x; —1)(1))a.

Let d be the maximal integer value such that, i + 2 + d <last and, for each c € [[0, d]], the right-
side energy used in Y; 1o is at least ;104 —li+1+c (Note that d > —1.)

Then, by Lemma 7| (Lemma C), for each ¢ €[]0, d]], the right-side energy used in Y; o, is exactly
livoye—livite

Let 4’ be the minimal integer such that ¢ <i’ <last and the right-side energy used in Y;/ 1 is greater
than li/+1 — li/.

It follows that there must be some integer i, such that i +2+d <i”+1<i'+ 1 and the right-side
energy in Y;»41 is at most l;n41 — ;7 — 1.

Thus, the total right-side energy is at most:

(1+1o) + (Ziigil lig1— 1) +1<lhast +2=k+2.
Lemma 9. (Lemma R.) re{t: t€Z AN t>s} <k+2.

EXTERNAL ENERGY IN RELIABLE NETWORK:

By Lemma 3 (Lemma L) and Lemma|9 (Lemma R), we have the bound 2k + 3 on the total external
energy:

Theorem 10. (Theorem E.) le{t: tcZ ANt>s}+re{t: t€Z Nt>s} <2k+3.
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ENERGY IN UNRELIABLE NETWORK

In unreliable network, in each time-slot when the receiver listens, the receiver successfully receives
the key with some probability p, where 0 < p < 1.

For each t € Z, let success, ; be a random variable such that success, ;=1 with probability p and
success, ;=0 with probability 1 — p. Let ¢ denote 1 — p.

The receiver successfully receives a key in time-slot ¢ if and only if the receiver listens in time-slot
t and successy ;= 1.

Let 1b, ; and ub,, ; denote the values of variables Ib and ub, respectively, just before the time slot ¢.
Note that, for each ¢, 1b, : and ub, ; are random variables.

For each t > s, we have:
o if revy(t) €[[lbp ¢, 7" —1]], then
o if successy, =1, then Ib, ;41 =revi(t)+1 else by, 111 =1b, 4,
and
o ifrevy(t) €[[r”+1,ubp ] then
o if successp =1, then uby ¢41=revy(t) + 1 else uby 41 =1uby ;.

In reliable network we had lbmain,jJrl —1> pé,j and meain,jJrl +1< pl"',j.

In wunreliable network we can show the corresponding bounds on the expected values of
by maxy; ;41— 1 and ubp maxy; ;41 +1:

Lemma 11. (Lemma Ul) For i€ [[0,last]], for j €[0,1]], we have

e EX[lby maxy, ;41— 1]> pii— % .9k=7 and

L4 EX[pr,maind—i—l"‘l]Spg/,j+%'2k_j7

where g=p—1.

Proof.
We have by maxy; ;+1— 1 =max ({Iby miny, — 1} U A), where
A= {revi(t) : te Y7, _, Yi js Asuccess, =1} N[0, pi ;]
Since U%,_y Xi,jr=Xi ;N[[0,28 = 1] and X, j={p] ;+ 2"~ —d-28=7: d€ Z}, we have

J J

revy, U Yijr | = U Xi jr

-

J'=0 j'=0
= {pl;+2F 7 —d-2k=7: dez}ynlo,2~ —1]].

Recall that we also have: p} ; <r'<pj ;+2F7J.
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For t € U?/:o Y; i, let dy=(p} ;4289 —revy(t)) /28 .
Thus, revg(t)=p; ;+2~~7 —d;-2~~J.

Note that

J J
revg(t): t € U Yij7ANdi>1p = qrevg(t): te U Y; i Arevi(t) <r’
j'=0 j'=0
J
U Xi,j/ ﬂ[[O,r’—l]].
=0

Let g=min{d: d€Z A p] j+2F~7 —d-2F=7 < -1},

Since p’+2F~7>0, we have g€ Z, g>1.

Let d'=min{d: d€eZ A d>1 A p] ;4+2"77 —d- 277 <Iby maxy, ;41— 1}.
We have

EX[1bymaxvi ;41 —1] > pj;+2"77 —EX[d] - 2¢~
pi,j — EX[d'—1]- 277,

Since 1bp,main,j+1 —1>—1, we have

J
d'=min| ¢d;: te U Y jsAdy>1Asuccessp =1 U{g} |
J'=0

Since p; j+2F77 —(g—1)-2""9> —142F=9>0, we have

J
Jj'=0

Remark: For 0 < p <1, we have Zj:(’f (1—p)i—t= j:‘)g (1—p)i:ﬁ:%.
Thus:
+oo
L= (-p"p
=1 | oo |
= Y, (-pitp+) (1-p)itop
i€[[1,9-1] i=g
= > (A=pitp+(1-prty (1-p)top
ie[L,g—1]] _ i=1
= Y (-pitp+(A-ptL
i€[[1,g-1])

For i € [[1, g — 1]], the probability that d’=i is (1 —p)i~!-p.

If d'¢[[1, g —1]], then d’ = g and this happens with probability (1 —p)9~1.
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Hence, we have

EX[d] = Y i-(1-p)tptg-(1-p)!

ieltg-1)

. +m .
= Z Z’.(l_p)z—l,p+g,z(1_p)z—1.p
ie(tg-1) i=g

. +m .
< Y i (l=p)Thop+) i-(1-p)lop
il i=g
=Y i-(l-pitp
i>1
_ 1
>

(Last equality is by geometric distribution.)

Thus we have EX[d' — 1] < % —1 and, hence,

EX[le,m&XYi,j-i-l - 1] > pz{,j - EX[d/i 1] -2k
1 .
> pz{,j*(l—)*l)'Qk !
q o
= pzfyj__.gk J,
p
For last equality, observe that (% -1)= %, where ¢g=1—p.

By analogy: EX[ ubp maxv; ;j+1 +1]§p£fj+%-2k_j.

Let le, ; and re, ¢ be random variables defined as follows:
o if revy(t) €[lby ¢, 7" —1]] then le, ;=1 else lep =0, and
o ifrevy(t) €[[r”+1,ubp ] then rb, ;=1 else rb, ;=0.
Note that, for each set of time-slots Y,
o the left-side energy used in Y is )7, .y le, ¢, and
e the right-side energy used in Y is )7, _ rep ¢

In reliable network we had leY; ;1 <1 andreY; ;11 <1.

We show the corresponding bounds on the expected energy costs for unreliable network:

Lemma 12. (Lemma U2) If j €[[0,l; — 1]], then

. EX{ZmYMH 1ep7t}g +1, and

1
p

o BX|,oy, o] <41

1
p

Proof.
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By Lemma 11 (Lemma Ul), we have

EX[lbp,maXYi7j+1 —1] > ph - 1—_p Lok—j

We also have 7/ —1<pj ;j+2F7J.

2,7

= pl+2k—i— .ok,

Thus EX[r'— 1 — (Ib, max v, ;41— 1)] <%.2’H.

Let A= [[Iby maxv, 11,7 — 1]].

If the receiver listens in time slot ¢t €Y; ; 11, then revy(t) € X; ;41N A.

Thus ZtEYi,]‘+1 lepyt S | rer(Xi1j+1) NA |

Recall that the minimal distance between the elements of X; ;4 is 28~ (+D+1=0k—j,

Let B={u€Z: minX; j41+u-28"7€ A}.

Then B= [ [(Ibp maxy; ;41 —min X; j41)/28 797, [((r' = 1) —min X; j11)/2%~

Since X; j41NAC{x: z:minXiﬁjHJrqu’j/\uGB}, we have:

[ Xij41NAl < |B|

= [((r"=1) —min X; j41)/25 77 | = [(Ibp,max v, ;41 — min Xy j41) /2
(7’/ —-1- 1bp7max Yl‘j-&-l)/2k7j + 1.

IN

Thus:

EX

Z lep,t

teYi j+1

|

<

<
<

EX[|revi(Xi j+1) NA[]

EX[T/ —1- 1bp7max Yl‘j-&-l]/Qk
1/p+1

By analogy: EX[ZteYi o rep,t} <1/p+1.

In reliable network we had le Ulji:O Yit1,; <1 andre Ulji:O Yig1,; <1

7171

j'|_|_1

We show the corresponding bounds on the expected energy costs for unreliable network:

Lemma 13. (Lemma U3) If i <last then

. EX[

Zte[[min Yiqr,max Vi ]l lep,t}

<1/p+1 and

° EX[ZteHminYiJrl’ma‘XYiJrl,zi]] I'ep7t:| < 1/p+ 1.

Proof.

By Lemma 11 (Lemma Ul) we have EX[by maxv; ,,+1— 1] > pi i, + ok —li >

We also have 7/ —1<pj; +2k-b

Thus EX[ru171bp,maxyi,,i+1+1]<%.2k*li.

19
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Note that maxY; ;,+1=maxY;+1=minY; ;.

Let A=[[Iby miny;,,,r" —1]].

If the receiver listens in time slot ¢ €Y; ;4 1, then revy(t) € (revy [min Y11, maxY;41,,]]) N A.
We have revy, [[min Y; 11, max¥; 41 ,]] C Ulji:O Xit1,; CXiq1,0,

Recall that the minimal distance between elements of X; 1, is 2k=li and

min X; 1 =min X;11,0€ X411,

Thus
Xi+17limA = {:C|Euezx:minXH_l—f—Qk_li-u}ﬂA,
and

1Xit1,,NA| L((r" = 1) —min X, 1)/2577 | = [(Ibp min v, —min X, 1)/25 797 41
!

<
< (7“ o lbILmiH Yi+1)/2k_j +1.

Thus EX[[X; 1.5, A]]<1/p+1 and, hence EX[Zte[ 1ep7t} <1/p+1.

[minY; +1,max Yii1,1,]]

By analogous reasoning, we have EX[Zte[[ rep,t] <1/p+1.

min Y 1,max Yiy1,1,]]

In reliable network we had le[[s, s+ 2% —1]] <k +1 and re|[s,s +2F — 1]] < k +2.

We show the corresponding bounds on the expected energy costs for unreliable network:
Lemma 14. (Lemma U4)

° EX{ZtE[[minYo,maXYlastH lep’ti| S (1/p+ 1) ’ (Qk + 1)7 and

. EX{ZtG[[minYo,maxY]ast]] rem} <(1/p+1)-(2k+1).

Proof.

We have [Yo 0| =1 < (1/p+1) and, for j € [[1, o]}, by Lemma 12 (Lemma U2), Ex{zteyo j 1et} <
(1/p+1).

Thus

EX <(1/p+1)-(lp+1).

Z let

teYy

For i €[]0, last — 1]], by Lemma 13 (Lemma U3), E)X{Z:te[[mimy_+1 omax Y10 ]] 1ep7t:| <1/p+1.

For each j €[[l;+1,l;4+1]], by Lemma 12 (Lemma U2), EX[Zten+1 ; let} <(1/p+1).
Thus

EX

Z let]S(l/p+1)-(li+1—li+1).

t€Yit1
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It follows that

EX EX

Z lep,t‘|
]

t € [[min Yo, max Yiast)

> ¥ ]

1€[[0,last]] teY;

last
< (1/p+1)- <lo+1+z (i — L1+ 1))
=1
(1/p+1)-(last + 1 + last)

(1I/p+1)-(2-k+1).

By analogy: EX[ZtG[[min Yo, max Yise] ret} <(1/p+1)-(2k+1).

In reliable network we had le{t €Z: t>s+2F} =0 and re {t€Z: t >s+2*}=0.

We show the corresponding bounds on the expected energy costs for unreliable network:

Lemma 15. (Lemma US5)

EX[ 3,5y, (epitreys) [<2q/p?, where g=1—p.

Proof.
Recall that n =2 is the length of broadcast cycle.
For integer ¢ > 1, each of the values 7’ — by, s4;., and ubp s4i.n — 1"
is a random variable.
For each z € [[0,n — 1]], let the event F;(z) be:
“For each t € [[s,s+1i-n —1]] such that revy(t) =z, success, ;=0.”
We have revi(z) =revi(xz +n) and,
for each integer j, revg[[s+j-n,s+ (j+1)-n—1]]=[[0,n—1]].
Thus, for each = € [[0,n —1]],
there are exactly ¢ time-slots t in [[s,s+i-n — 1]] such that revy(¢) =z and
the probability of the event Fj(z) is ¢
By the definition, uby ;. is the maximal u € [[r”,n — 1]] such that,
for each x € [[r" + 1, u]], Fi(x) is true.
Hence, the expected value of uby, s4;.n+1— (1" +1)=ubp 4i., — 7" is not greater than
Y J (@) (1= ¢)=1/(1~¢q").

By analogy: the expected value of 7' —1b, ;. is not greater than 1/(1 — ¢*).

In time slots t€[[s+i-n,s+(i+1)-n—1]],
le, =1 (respectively, re, ; =1) implies that
evk(t) € [Dbpyain, 1] (respectively, revi(t) € [+ 1, ubp,1i.n]):

Thus, for 7 > 1,we have
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EX] Zt:[[s-{-ivn,s—i—(i—i—l)»n—l)]] (lep,e+repe) 1<2-(1/(1—g")—1).
Finally, note that

S (1/A-g)-1) = 3 (¢//(1- )

oo
j=1 j=1

IA
|
| |~
S
N
<.

Corollary 16. (Corollary U6)

EX[Y,5, lepetrep ] < (1/p+1)- (4k+2) +2(1—p)/p*.

Proof. From Lemmas 14 and 15 (Lemmas U4 and U5)
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Implementation

RBO receiver has to switch on the radio receiver in each time-slot ¢ such that revy(t) — the index
of transmitted key — is between the values of variables 1b and ub.

Suppose that, just after the time slot ¢, the value of b is r; and the value of ub is rs.
Then the next the next time slot, when the RBO receiver has to listen is

the minimal ¢’ > ¢ such that revy(t’) € [[r1, 72]]-
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Next wake-up time-slot

Definition of nsig(t, r1, r2):

nsig(t, r1, re) =min { t' |t/ > ¢ Arevg(t)) € [[r1,r2]] }.

Computation of nsig(t, r1,r2):
1 t"+t+1
2. 1+0
3. repeat
a) t/ < t"

b) while | <k A t'mod2!t1=0

do [+I+1

c) w14 revg(t))

d) ¢t/ +2!

e) zo¢revy(t'+2'—1)
4. until r;{ <x9 and r, > 7 and

[(r—21) /287 < [(r2 — 1) /287

5. c+2F-1
6. while z1<r{Vz1>ry do

a) if x1<ry
then z1 <21 +¢

else r1+z1—¢
b) c¢/2

7. return 2% |t//2% | +revy(xq)
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Example: Figure 1] illustrates the computation of nsig(t,r1,72), for k=5, t=>5, r1 =7 and ro=09.

The black square dots are the graph of x =revy(t), where t is vertical dimension increasing down-
wards (representing time-slot), and x is horizontal dimension increasing rightwards (representing
the index of transmitted key).

Let us define the blocks of time-slots Y, Y1,..., and the sets of indexes X, X1, ..., under assumption
that s=to=t+ 1=6. (Note that all of them are bellow the time-slot t =5.)

In our example: Yo={6,7}, Y1=1{8,9,...,15}, Yoa={16,17,...,31}, Y3={32,33,...,64}.

The lines represent Binary Search Trees on the subsets X;, where the jth level of each such tree
is the subset X; ;. To see the correctness of these trees, recall that, for each j €[[1,l;]], we have:

‘U?:o Xi | =1Xi;l, and

e 287G =D s the minimal distance between distinct elements of Uj:,_:lo X, i, and
e 287G =D s the minimal distance between distinct elements of X; ;, and

e 2F~Jis the minimal distance between distinct elements of U;:,:O X, 5, and
° minXiJ:(U;,;lo Xi,j/)+2k_j.

Let i’ be the minimal ¢, such that X; intersects the interval [ry, ro].

When the repeat loop finishes, we have: 1 = min X/, 22 =max X;,, t'=minYj,, t" =maxY;/, and
=1

In our example: ¢'=2, min X;»=1, max X;»= 32, minY;» =16, maxY; =31, and [;;=4.

In the while loop starting in line 6, we do binary search on the binary search tree on X,/ until we
enter the interval [r1, o] for the first time. When the loop finishes, the value of 1 is in [r1, 9] and
y=2F.[t'/2% | +revy(x1) is the minimal time-slot in Y;s such that revy(y) = z;.

In our example the final value of z; is 9 and the value returned by the algorithm is 18.
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Figure 1. Computation of nsis(5,7,9)
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Correctness of the NSI algorithm:

For the analysis of the computation of nsi(t, r1, r2), we define:

o {o,t1,...,
o o ly,...,

e last,

o Yy Y, ...,
o Xo Xy,...,

e the subsets X; j,
under the assumption that s=to=1t+ 1.
Lemma 17. (NSI1) Let 0<r  <ro<n-—1.
Then the “repeat” loop of line |3 finishes.
Let x1 and x4 be the values of variables x1 and xo,
respectively, just after the line 4.
Then 7 =min X;, and

b =max X;,

where i/ =min {i: i >0AX;N[[ry, ro]#0}.

Proof. Let the iterations of the “repeat-until” loop be numbered starting from zero.
After the ith iteration, at line 4, we have

o [=1

o t'=t,,

e 11 =min X; =revy(t;),

o t''=t;11,

e 1y=revi(maxY;) =max X;.
Thus, the condition

r1<azaAre > a1 A [(r1—21) /2871 < (e — 31) /277

is equivalent to

r1 <max X; A7 >min X; A min {j:min X; + 257t 5 >} <max {j:min X; +2F"h. j <o},
which is equivalent to

X;N [[7’1, 7’2]]9&(2),
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since X; = {min X; +2F~t.j: j€Z}n[[0,n—1]].
We have Xia5t =[[0,n — 1]] 2 [[r1, m2]]#0, thus the “repeat” loop is finite.

Hence, at line 5, we have x1 =revy(t;/) =min X;,, where i/ =min {i > 0| X; N [ry, ro]#0}.

Lemma 18. (NSI2) Let 0<r1<ry<n—1 and let y' be the value returned in the line 7.
We have and y' €Yy jr,
where i’ =min {i | i > 0A X;N[[r1,r2]]#0} and
j'=min{j|j€[[0,l]] A Xir ;0 [[r1, r2]]#0} and
Xirjr O [[r1, rol] = {revr(y’) }.

Thus nsig(s’,r1,r2) =vy’.

Proof.

Let x1 ¢ (respectively, ¢g) be the value of z1 (respectively, ¢) just before the line 6.
Let x1 ; (respectively, c¢;) be the value of z; (respectively, c)

just after the jth iteration of the “while” loop of line 6.

We have z1,0=min X;» =min X, o, where, by Lemma 17 (Lemma NSI1),
1/ =min {Z >0 | X;N [[Tl, 7“2]]7&(2)}.

Let ;' be the number of iterations of the “while” loop.
For 0< j <j’, we have c;=2F"177J.

We have 0+ X;/ N [[r1,72]] C [[min X;/, min X; + 2% —1]].
Thus j' <l;» and x1 j/ € [[r1,72]]-

For each j €[[0, j']], we have z1 ;€ X/ ;.

If j'=0, then X,/ ;o= {min X;/} ={x1,0} C[[r1,72]] and revy(2*- [t'/2% | +revi(z1,0)) = z1,0.
Let 5/ > 1.

We can show by induction that, for each j €[[0, 7' —1]], we have z’ such that
o Xy 37/ <ri<ro<a'+27eX;; and
o up €{z/,2'+2" 7} and
o Xy N[z’ +2F 9 ={a', 2’ + 2877} and
o myj=a/+2kI7L
Thus zlyj/ka_j/<T1 and r2<x11j/+2k_j/.

Hence Xi/,j/ N [7“1, 7“2] = {xl,j/}gxild‘/_l.
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Since (Xi/,j/\Xi/,j/_l) N [[0, n— 1]] =Xy jand 0<ri<ro<n—1,
we have wl,j/EXi/,j/ and

(reverse of the returned value ) revy(2%- [t'/2F | +revy(z1 ;1) =21, 4. O

Complexity of the NSI algorithm:

Time complexity:
The number of iterations of the “repeat-until” loop is never greater than &+ 1.
Since [ never decreases, the total number of iterations of the internal “while” loop (line 3/ b)

in all iterations of the “repeat-until” loop is never grater than k + 1.

The total number of iterations of the binary search loop (starting at line|6)) is never greater than k.

Complexity of the algorithm:
e memory: constant number of k-bit variables

e time: O(k) elementary operations on k-bit integers

Example implementation in Java:

On Figure 2, we present the implementation in Java language used in the simulation
of RBO on TinyOS (https://github.com/mkil967/rbo-tinyos-java).

It computes and returns the value: nsig(t, 1, 72) mod 2k,

(It uses also revBits(k,t) that computes revg(t).)

We replaced some operations such as e.g. divisions by the powers of two by bit-wise operations
such as shifting and masking operations that should be more efficient on real processors.

We use the following bit-masks, related to the values k and [ of the original algorithm:
e twoToK for 2F=(1(0))y,
e modMaskK for 2% — 1= ((1)¥),,
e twoToL for 2! = (1(0)!)s,
e stepLMinusOne for 287! — 1= ((1)k=1),,
e stepDivMask for revy (2! —1)=((1)/(0)*~1)s,.

Variables: t1, tNext, x1, x2, and s correspond to the variables: t’, t”, z1, z2 and c of the original
algorithm, respectively.
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public static int nextIn(int k, int t, int rl, int r2)
// we assume 0<=ri<=r2< 2°k
{
int twoToK=(1<<k); // 27k
int modMaskK= twoToK-1; // 2"k-1
int t1,x1,x2, stepDivMask;
int twoTolL=1;
int stepLMinusOne=modMaskK;
int tNext=((t+1)&modMaskK) ;
do
{
t1=tNext;
while (twoToL<twoToK && (t1&twoToL)==0)
{
twoToL=twoToL<<1;
stepLMinusOne=stepLMinusOne>>1;
}
tNext=((t1+twoToL)&modMaskK) ;
stepDivMask=(("stepLMinusOne) & modMaskK) ;
xl=revBits(k,tl);
x2= (x1 | stepDivMask );
}while( r1>x2 || r2<x1 ||
((r1-x1+stepLMinusOne)&stepDivMask)>((r2-x1)&stepDivMask)) ;
int s= (twoToK>>1); // 2~ (k-1)
while(x1<rl || x1>r2)
{

if(x1<rl) xl1=x1l+s;
else x1=x1-s;
s=s/2;

}

return revBits(k, x1);

Figure 2. Implementation in Java of computation of: nsi(¢,r1,7r2) mod 2k
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